Выбери факторы влияющие на срок годности колбасы ультрафиолет температура или бактерии

Действие физических факторов. I

Высушивание губительно действует на микробы, однако разные виды обладают различной чувствительностью к высушиваниию. | Холерный вибрион гибнет через 48 часов, возбудитель

туберкулёза — через 70 дней. Длительно сохраняются микробы в высохших плёнках из гноя, крови или мокроты (месяцы), высушивание практически не действует на споры. В процессе высушивания клетка лишается воды, происходит инактивация ферментных систем, наступает гибель микроба. Высушивание применяют в медицине: в сухом виде хранят лекарственное сырьё, многие лекарства. Широко применяется лиофильная

сушка — высушивание из замороженного состояния в вакууме. В этом случае вода переходит из кристаллического состояния в парообразное, минуя жидкую фазу, жизнеспособность микробов охраняется; срок годности живых вакцин и других иммунобиологических препаратов увеличивается до 1 года и более.

Лучистая энергия (ультрафиолет и ионизирующее излучение) непосредственно действует за нуклеиновые кислоты в клетке, вызывая смертельные мутации, или приводит к образованию свободах радикалов, вызывающих инактивацию ферментных систем. Солнечный свет, особенно его коротковолновая часть

спектра, оказывает выраженный бактерицидный эффект. УФЛ используют в медицине для обработки операционных, родильных домов и отделений, асептических помещений аптек, в бактериологических лабораториях. Для этих целей устанавливают бактерицидные облучатели с длиной волны 260-300 нм Ионизирующее излучение используют для стерилизации.

Ультразвук вызывает гибель микроорганизмов: в клетке образуются кавитационные полости с резкими перепадами разреженного и избыточного давления, что приводит к разрушению клетки. Этот метод используют для получения компонентов микробной клетки, обеззараживания некоторых жидких препаратов, питьевой воды, молока, соков.

Температура ниже 0° С не оказывает губительного действия, однако микробы прекращают рост и размножение. Некоторые вирусы сохраняются при — 27С°. В медицине лекарственное сырье, многие лекарственные и биологические препараты хранят при температуре от 0°С до + 10°С (температура бытового холодильника) Высокие температуры более губительны для микробов, однако разные виды могут обладать неодинаковой чувствительностью. Так, менингококки гибнут уже при комнатной температуре, возбудитель сифилиса — при +40°С, возбудитель дизентерии — при +60°С, бруцеллы — при 100°С. Споры бактерий погибают лишь через 2-5 часов кипячения.

Стерилизация — полное обеспложивание объектов, при котором уничтожаются все формы микроорганизмов (вегетативные и споры). Для стерилизации применяют физические и химические методы. Выбор метода определяется видом стерилизующего материала, который после стерилизации должен сохранять свои основные свойства (форму, эластичность, активность и др.). Физические методы — действие высокой температуры, ионизирующего излучения.

Методы тепловой стерилизации:

1)однократные методы:

-горячим воздухом сухожаровой шкаф 180 и С, 60 минут, (160 °С, 150 минут)

-паром под давлением (автоклав) 120 «С, 45 минут, давление 1 атм, (132 °С, 20 минут, давление 2 атм)

многократные методы:

-текучим паром автоклав с открытым клапаном 100 «С, 3 дня по 1 разу каждый день

-тиндализация дробная стерелизация

2)Многократные методы — это дробная стерилизация объектов, которые могут быть питательным субстратом для микробов (в промежутках между стерилизацией объект оставляли при комнатной температуре для прорастания спор). Образовавшиеся негетативные формы микроорганизмов уничтожаются.

Контроль процесса стерилизации осуществляют несколькими методами:

1) по показаниям приборов (манометров, термометров, таймеров);

2)с использованием физико-химических тестов (вместе со стерилизуемым материалом в аппарат закладывают ампулы с кристаллами веществ или специальные бумажные термохимические индикаторы; при нужной температуре вещества расплавляются, а индикаторы меняют цвет);

3)биологические тесты (в аппарат помещают пробирки с салфетками, пропитанными взвесью термостойкого спорообразующего микроба, и после стерилизации их инкубируют в ПБ, который не должен мутнеть).

Ионизирующее излучениеэто наиболее перспективный метод, г. к. возможна полная автоматизация всех процессов. Стерилизацию проводят в товарной упаковке, что обеспечивает длительность сохранения материала стерильным. Установка представляет собой бетонную камеру толщиной 2 метра, с надежной защитой от радионуклидов. После обработки материал контролируется на остаточную радиоактивность. Этим способом стерилизуют хирургический инструментарий, изделия пластмассы, вакцины, лечебные сыворотки, многие лекарства.

Методы химической стерилизации:

1) 6% раствор перекиси водорода экспозиция — 6 часов. Стерилизуют хирургический инструментарий, изделия полимерных материалов, резины, стекла;

Газовая стерилизация. Используют смесь ОБ (смесь окиси этилена с бромистым метилом в соотношении 1: 2,5 (2000 мг/куб.дм, экспозиция 6-16 часов). Стерилизуют оптику, кардиостимуляторы, изделия из полимерных материалов радиоэлектронное оборудование. В некоторых случаях используют совместное воздействие физических и химических факторов.

Дезинфекция

Дезинфекция — комплекс мероприятий, направленных на уничтожение на объектах конкретных патогенныхмикробов. В медицине применяют физические и химические методы дезинфекции.

I Физические методы: 1) механические (вытряхивание, проветривание, влажная уборка, стирка с мылом); 2) действие высокой температуры (прокаливание утюгом, кипячение, пастеризация); 3)УФО (облучение бактерицидными лампами).

II Химические методы — применяют в различных концентрациях следующие дезинфицирующие вещества: I) хлорсодержащие препараты (хлорная известь, хлорамин Б, гипохлорит кальция,

хлоргексидия и др.); 2) окислители (перекись водорода, перманганат калия); 3) фенолы (карболовая кислота, лизол); 4) йод и Йодофоры (йод + поверхностно-активные вещества, ПАВ);

5) соли тяжёлых металлов (сулема, диоцид, мертиолсят); ПАВ (сульфанол); 7)_четвертичные аммонийные соединения, (роккал); 8) 70% этанол; 9) формалин; 10) красители (бриллиантовый зеленый); 11) кислоты (салициловая, борная и др.).

Механизм дезинфекцииразличен: механическое удаление; коагуляция белков при нагревании; хлорсодержащие препараты и формалин взаимодействуют с аминогруппами белков, окислители

— с сульфгидрильньши группами; фенолы повреждает клеточную стенку и нарушают процессы дыхания, соли тяжелых металлов образуют альбуминаты белков, ПАВ изменяют заряд клеточных мембран, четвертичные аммонийные соединения нарушают процессы дыхания, красители взаимодействуют с нуклеиновыми кислотами и т.д.

Асептика — система профилактических мероприятий, направленных на предотвращение попадания в рану, микроорганизмов, лекарственные препараты. Она включает: I) стерилизацию инструментов, приборов, материалов; 2) специальную обработку рук; соблюдение определенных правил и приёмов работы (стерильный халат, маска, перчатки) Исключение разговоров и т.п.); 4) осуществление специальных мероприятии (правильная вентиляция, влажная уборка с применением дезинфицирующих средств, облучение бактерицидными лампами).

Антисептика — комплекс мероприятий, направленных на уничтожение микробов, попавших в рану. Применяют антисептику: I) механическую, например, удаление из раны инфицированных или нежизнеспособных тканей при обработке раны; 2) физическую (наложение гигроскопических повязок, применение гипертонических растворов, способствующих оттоку раневого, отделяемого в повязку, сухого тепла, УФС, лазера и т.д.

3) химическую (применяют химические вещества, обладающие бактерицидными или бактериостатическим действием при минимальном органотропном действии, например хлоргексидин; I лекарственные препараты вносят борную кислоту, мертиолят и

4) биологическую (применение антибиотиков, бактериофагов, иммуноглобулинов, средств, стимулирующих защитные силы Организма).

Пастеризация— однократное кратковременное прогревание при температуре ниже 80°С, частичное обеспложивание продуктов. Как и кипячение, пастеризация не является методом Стерилизации. После пастеризации сохраняются споры и вегетативные формы, поэтому пастеризованный продукт (молоко, соки и т.д.) хранят в холодильнике.

Контроля эффективности дезинфекции. Контроль текущей и заключительной дезинфекции в очагах кишечных инфекций основан на обнаружении в исследуемом материале кишечной палочки, постоянно находящейся в выделениях больных и по устойчивости близко стоящей к

возбудителям кишечных инфекций. После проведения дезинфекции в исследуемом материале кишечная палочка должна отсутствовать.

Для контроля работы дезинфекционных камер используют эталонные культуры, например, стафилококк — при обработке вещей из очагов инфекций, вызванных неспорообразующими микроорганизмами, споры антракоидной палочки — при дезинфекции вещей из очагов инфекций, вызванных спорообразующими микробами.

Основные положения работы централизованных стерилизационных отделений (ЦСО) в лечебно-профилактических учреждениях

Эти отделения созданы для предупреждения парентеральных заражений вирусными парентеральными гепатитами, ВИЧ-инфекцией, и другими заболеваниями, а также постинфекционных осложнений.

ЦСО осуществляет: I.) приём использованного и предварительно очищенного инструментария; 2) мойку инструментов с целью очистки от остатков лекарственных веществ и крови с последующей проверкой на наличие «скрытой» крови и остатков моющих средств (бензидиновая амидопириновая и фенолфталеиновая пробы); 3) упаковку инструментов, перчаток, перевязочного материала ведут в специальную бумагу, двойной слой мягкой упаковки, биксы; 4) стерилизацию, которая проводится в паровых стерилизаторах (температура 120°С, Р-1 атм., экспозиция 45 минут; температура 132°С, Р-2 атм., экспозиция 20 минут — так стерилизуют перчатки, инструментарий, перевязочный материал, белье), в воздушных стерилизаторах (температура 180°С, экспозиция 60 минут — так стерилизуют шприцы, металлические катетеры, шпатели, изделия из стекла и металла). Стерильный материал в биксах при упаковке в двойную бязевую ткань хранят не более 3 суток, в пергаменте — не более 3 недель.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

1) 6% раствор перекиси водорода экспозиция — 6 часов. Стерилизуют хирургический инструментарий, изделия полимерных материалов, резины, стекла;

Поскольку в процессе изготовления сырокопченых колбас не применяют тепловой обработки, обеспечивающей уничтожение неспоровых микроорганизмов, микрофлора этих колбас изменяется иначе, чем вареных и полукопченых.

В ходе технологического процесса изготовления сырокопченых и вяленых колбас создаются условия, хотя и замедляющие, но не исключающие жизнедеятельность микроорганизмов в продукте. Поэтому в фарше этих колбас размножаются некоторые группы микроорганизмов. В результате их размножения общая микробная обсемененность фарша постепенно возрастает во время длительной осадки, копчения (у сырокопченых колбас), и в начале процесса сушки, достигая к 10—20-му дню созревания (сушки) продукта миллионов и более микробных клеток в 1 г. Затем общее количество микроорганизмов постепенно снижается и к концу сушки (примерно через 30—50 дней) уменьшается в несколько раз.

При созревании колбас их микрофлора изменяется не только количественно, но и постепенно качественно.

Групповой состав микрофлоры исходного фарша сырокопченых и сыровяленых колбас очень разнообразный. Основную массу микрофлоры составляют грамотрицательные бактерии, в том числе из группы кишечных палочек (Е. coli и др.) и рода Proteus; гнилостные споровые аэробные бациллы (Вас. subtilis, Вас. mesentericus и др.), анаэробные клостридии, энтерококки, стафилококки. Кроме этих групп микроорганизмов в фарше обычно содержатся в небольших количествах дрожжи, микрококки и молочнокислые бактерии.

Данные, характеризующие изменения количественного и качественного состава микрофлоры, которые происходят в процессе созревания сыровяленых колбас, представлены в табл. 13.

Изменение состава микрофлоры сырокопченых и вяленых колбас связано с тем, что на состав и развитие микроорганизмов определенное воздействие оказывают обезвоживание среды и повышение концентрации соли, коптильные вещества, (на поверхностную микрофлору сырокопченых колбас), изменение рН продукта и микробный антагонизм.

В процессе копчения продукт пропитывается антисептическими веществами коптильного дыма, подавляющими развитие микроорганизмов. Однако к действию коптильных веществ наиболее чувствительны только неспорообразующие микроорганизмы, особенно Е. coli, Proteus vulgaris, стафилококки и вегетативные форм4ы споровых микроорганизмов. Споры аэробных бацилл, анаэробных клостридий и плесени обычно при копчении не погибают.

Интересное:  Как Лучше Заготовить На Зиму Щавель

Кроме того, значительные количества коптильных веществ проникают только в поверхностные слои фарша, а в центре колбасных батонов их концентрация обычно в 10—15 раз ниже. Следовательно, коптильные вещества играют лишь второстепенную роль в подавлении жизнедеятельности микрофлоры фарша. Бактерицидный эффект копчения заключается главным образом в создании бактерицидной зоны в поверхностных участках продукта, защищающей его от проникновения и размножения микроорганизмов извне.

Существенное, определяющее воздействие на развитие микроорганизмов в сырокопченых и вяленых колбасах оказывают обезвоживание продукта и повышение вследствие этого концентрации соли как фактора, определяющего величину осмотического давления в фарше. Обезвоживание и повышение концентрации соли происходит по всей толще продукта неравномерно. Поэтому в центральных, менее обезвоженных участках колбасных батонов благоприятные условия для размножения микроорганизмов сохраняются значительно дольше, чем в поверхностных слоях. По мере обезвоживания и увеличения в связи с этим концентрации соли количество микроорганизмов начинает уменьшаться. При концентрации соли 10% и более происходит резкое снижение количества микробов в колбасном фарше. Дальнейшее уменьшение количества микроорганизмов находится в прямой зависимости от повышения концентрации соли (рис. 31).

Существенное влияние на изменение группового состава микрофлоры при созревании колбас оказывают антагонистические взаимоотношения различных микроорганизмов. Многие штаммы L. plantarum, L. breve, Pediococcus cerevisiae и других молочнокислых бактерий, выделяемые из копченых колбас, обладают выраженным антагонизмом в отношении тест-культур Е. coli, Proteus vulgaris, гнилостных аэробных бацилл (Вас. subtilis и др.), стафилококков. Штаммы дрожжей из рода Deba-ryomyces оказывают антагонистическое действие на плесневые грибы из родов Penicillium, Cladosporium, Aspergillus, Mucor, Endomyces lactis (Oidium lactis).

Микробы-антагонисты обладают значительной солеустойчивостью, что позволяет им более активно размножаться в процессе постепенного обезвоживания продукта. В результате жизнедеятельности молочнокислых бактерий и микрококков происходит постепенное вытеснение грамотрицательных бактерий, аэробных гнилостных бацилл, стафилококков. Антагонизм молочнокислых бактерий и микрококков обусловливается выработкой антибиотических веществ и сдвигом рН фарша в кислую сторону, неблагоприятную для размножения гнилостных и условно-патогенных бактерий. Активное размножение молочнокислых бактерий и микрококков объясняет факт постепенного увеличения общего количества микроорганизмов в первый период созревания колбас, когда значительная часть других микроорганизмов фарша отмирает под влиянием обезвоживания, повышенной концентрации соли, действия коптильных веществ и антагонизма этих микробов.

Таким образом, типичными представителями микрофлоры готовых созревших сырокопченых и сыровяленых колбас являются некоторые виды молочнокислых бактерий i(L. plantarum, L. breve, Pediococcus cerevisiae, Leuconostoc dextranum и др.) и различные виды микрококков. В некоторых сыровяленых и копченых колбасах (сервелат, салями и др.) кроме указанных групп микроорганизмов К типичной микрофлоре относятся дрожжи преимущественно из родов Debaryomyces и Candida. В составе микрофлоры сырокопченых и вяленых колбас в незначительных количествах присутствуют споровые аэробные бациллы (Вас. subtilis, Вас. mesentericus и др.), анаэробные клостридии (Сl. sporogenes, Cl. putrificus) и другие сапрофитные микроорганизмы.

Основная микрофлора сырокопченых и сыровяленых колбас (молочнокислые бактерии, микрококки, дрожжи) оказывает существенное влияние на созревание и формирование специфического аромата, вкуса, цвета и других органолептических свойств продукта.

Варено-копченые колбасы. В отличие от сырокопченых варено-копченые колбасы подвергают менее длительной осадке (1—2 сут), горячему копчению (при 50— 60°С), варке, вторичному копчению (при 32—45°С) и менее продолжительной сушке (7—15 сут).

Особенности технологического процесса влияют на изменение состава микрофлоры колбас при их изготовлении.

Во время осадки и первичного копчения, как и при изготовлении сырокопченых колбас, происходит размножение некоторых групп микроорганизмов (микрококки, молочнокислые бактерии) и количество микробов в фарше увеличивается. .

При варке значительная часть микрофлоры фарша погибает. В том числе отмирают Е. соН, Proteus vulgaris, часть молочнокислых бактерий, микрококков и споровых бактерий.

В процессе вторичного копчения и сушки часть микроорганизмов, выживших при варке, главным образом молочнокислые бактерии и микрококки, размножаются. Однако в сравнении с сырокопчеными колбасами общее количество микроорганизмов в фарше готовых варено-копченых колбас значительно ниже.

Групповой состав микрофлоры варено-копченых колбас, в конце сушки (созревания) почти не отличается от группового состава микрофлоры сырокопченых колбас. В нем преобладают те же группы микроорганизмов (микрококки, молочнокислые бактерии), жизнедеятельность которых играет определенную роль в процессе формирования цвета, специфического аромата и вкуса продукта.

Для улучшения качества сыровяленых и сырокопченых колбас и интенсификации технологического процесса в СССР, ГДР, Брлгарии, Финляндии, Франции и ряде других стран в настоящее время применяют специально подобранные штаммы молочнокислых бактерий (Lactobacterium plantarum, Lactobacterium acidophilnm, Pediococcus cerevisiae) и микрококков (Micr. casceolyticus, Micr. aurantiacus и др.). Во МТИММПе получены положительные результаты по использованию дрожжей из рода Debaryomyces для обработки поверхности сырокопченых и вяленых колбас с целью защиты от плесневения.

1.3. Изменение микрофлоры фарша при выработке вареных и полукопченых колбасных изделий

При выработке вареных и полукопченых изделий после наполнения оболочек фаршем колбасные батоны подвергают осадке, обжарке, варке и охлаждению. Полукопченые колбасы дополнительно коптят и сушат.

Осадка. При соблюдении технологического режима (температура не выше 2°С, относительная влажность 85— 95% и продолжительность не более 2—4 ч) количественный и качественный состав микрофлоры фарша почти не изменяется. Повышение температуры и увеличение продолжительности осадки может привести к значительному размножению микроорганизмов (в том числе иногда Сl. perfringens и других токсигенных бактерий) и увеличению общей микробной обремененности.

Обжарка (обработка горячим дымом температурой 80— 110°С в течение 0,5—2 ч). При этом процессе оболочка (а частично сам фарш с краев) пропитывается составными частями дыма, подсушивается. В результате этого создаются условия, неблагоприятные для размножения микробов на поверхности колбасных батонов. Под влиянием горячего дыма фарш нагревается. В колбасных батонах небольшого диаметра (3—5см) температура в центре повышается до 40—50°С, а батонов большого диаметра (от 5—15 см и больше) — 30 до —40°С. Следовательно, в батонах большого диаметра создаются условия, благоприятные для размножения микробов. Поэтому количество микроорганизмов в глубине батонов несколько возрастает. В связи с этим очень важно правильно соблюдать сроки обжарки, поскольку при их удлинении возможно значительное увеличение количества микроорганизмов в фарше.

Варка. К концу процесса варки в глубине батонов температура в зависимости от вида колбас достигает 68—75°С. При таком температурном режиме погибает до 90% и более микробов, содержащихся в сырых колбасах. При этом отмирают все неспоровые патогенные и условно-патогенные бактерии (Е. coli и Proteus vulgaris), большинство сапрофитных неспорообразующих микроорганизмов (кокки, молочнокислые бактерии, дрожжи и др.), вегетативные формы и часть спор спорообразующих бактерий. Под влиянием высокой температуры в процессе варки резко изменяется количественный и групповой состав микрофлоры колбасного фарша.

До варки групповой состав микрофлоры фарша колбасных батонов очень разнообразен и обычно представлен различными видами как неспорообразующих, так и спорообразующих микроорганизмов. Общее количество микробов в 1 г сырого фарша составляет десятки тысяч и более микробных клеток.

После варки в 1 г фарша обычно содержатся только сотни или несколько тысяч микроорганизмов. В глубине батонов количество микроорганизмов бывает несколько больше, чем в поверхностных слоях, которые более интенсивно прогреваются во время варки.

Остаточная микрофлора колбасных изделий после варки состоит в основном из спорообразующих палочковидных сапрофитных бактерий (Вас. subtilis, Вас. mеsentericus, Cl. sporogenes и др.) и незначительного количества неспоровых сапрофитных бактерий, главным образом кокков. Количество неспорообразующих микробов в вареных колбасах большого диаметра составляет обычно не более 10—12%, в батонах небольшого диаметра— только 4—7%, а в сосисках — всего 1—3% от общего количества микробов, выживших при варке.

Копчение и сушка. Групповой состав микрофлоры полукопченых колбас после копчения и сушки не изменяется. Общее количество микроорганизмов несколько уменьшается, поскольку часть микробов, выживших при варке, отмирает в процессе дополнительной обработки.

При варке значительная часть микрофлоры фарша погибает. В том числе отмирают Е. соН, Proteus vulgaris, часть молочнокислых бактерий, микрококков и споровых бактерий.

ВЛИЯНИЕ ПРОПИОНОВОКИСЛЫХ БАКТЕРИЙ И БИФИДОБАКТЕРИЙ НА КАЧЕСТВО СЫРОКОПЧЕНЫХ КОЛБАС

Аннотация: пропионовокислые бактерии и бифидобактерии широко используются в пищевой промышленности. Поэтому очень важно определить их биохимическую активность и потенциал по получению ароматов. В настоящем исследовании изучено влияние использования пропионибактерий и бифидобактерий в качестве заквасок на сенсорные характеристики сырокопченых колбас. Колбасы готовили с закваской, состоящей из Propionibacterium shermanii KM-186 и Bifidobacterium longum B379M, и сравнивали с колбасами с коммерческой закваской Bitec LS-25. Полученные результаты показали, что колбасы, содержащие закваску пропионовой кислоты и бифидобактерий, получили лучшие сенсорные показатели, лучшие качественные характеристики по сравнению с колбасами, изготовленными с использованием коммерческой закваски. Анализ летучих соединений показал, что добавление закваски, содержащей пропионовокислые бактерии и бифидобактерии, приводит к образованию дополнительных соединений, в том числе лактонов, фенолов и терпенов. В ходе сенсорной оценки эксперты обратили внимание на наличие в экспериментальном образце легкой сливочной нотки. Это может быть результатом образования лактонов пропионовокислыми бактериями и бифидобактериями. Кроме того, было показано, что добавление пропионовокислых бактерий и бифидобактерий снижает количество нитритов в колбасных изделиях в несколько раз (примерно в 11 раз по сравнению с коммерческой закваской) за счет нитроредуктазной активности этих штаммов бактерий.

ВСТУПЛЕНИЕ

Характерный вкус и аромат ферментированных колбас возникает в результате расщепления углеводов, липидов и белков под действием микробных и эндогенных мясных ферментов [1]. Аромат представляет собой комбинацию множества различных нелетучих и летучих соединений. Некоторые из них происходят из добавленных специй, другие являются метаболическими или химическими продуктами, полученными из углеводов, липидов и белков во время ферментации и сушки. Рост микроорганизмов в колбасном фарше, наряду с активностью ферментов из мяса и жира, несомненно, ответственны за многие из этих компонентов. Однако большое значение могут иметь и аутоокислительные реакции, инициируемые металлосоединениями или другими факторами [2, 3].

В ферментированных продуктах обнаружено много летучих соединений [4]. Летучие соединения, образующиеся при созревании сухих мясных продуктов, могут быть неферментативного происхождения, как при самоокислении липидов, или могут быть результатом катализа. Этот катализ обусловлен эндогенными ферментами в случае неинвазивных продуктов, таких как сухая вяленая ветчина, но зависит также от экзогенных ферментов в случае ферментированных мясных продуктов [2].

Неизвестно, какие процессы играют главную роль в желательном развитии аромата ферментированных колбас. Одним из наиболее изученных процессов является расщепление триглицеридов на свободные жирные кислоты, ди- и моноглицериды во время созревания и увеличение количества различных продуктов карбонильного окисления, таких как альдегиды и кетоны [1].

Окисление липидов является причиной образования неразветвленных алифатических соединений, таких как алканы, алкены, метилкетоны, альдегиды, спирты и несколько фурановых циклов. В процессе ферментации образуются низкомолекулярные соединения, например диацетил, ацетоин, бутандиол, ацетальдегид, этанол, уксусная кислота и др. [1].

Карбонильные соединения, вероятно, оказывают влияние на вкус, поскольку они обычно имеют очень низкие сенсорные пороговые значения в диапазоне от ppm до ppb. Поскольку жирные кислоты являются предшественниками карбонилов, считается, что липолитическая активность микроорганизмов, присутствующих в фарше, имеет большое значение и была тщательно исследована. Однако сомнительно, необходимы ли большие количества свободных жирных кислот для получения количества продуктов окисления, требуемого для характерного колбасного аромата, особенно когда карбонильные соединения могут образовываться как из интактных триглицеридов, так и из свободных жирных кислот.

Интересное:  Для чего булки смазывают водой после выпечки

Заквасочные культуры используются в мясной промышленности для запуска и распространения процесса ферментации, продления срока годности продукта, улучшения его гигиенического качества и повышения приемлемости конечного продукта [5]. Существует много технологий производства мясных продуктов, изготовленных с использованием заквасок [6, 7, 8, 9].

Пропионовокислые бактерии (ПКБ), наиболее распространенная флора при созревании сыров швейцарского типа, непосредственно участвуют в формировании характерных глазков и в производстве пропионовой и уксусной кислот. Также они играют ключевую роль в формировании вкуса сыра [10, 11, 12]. Однако они не находят широкого применения в мясной промышленности.

Пропионовокислые бактерии растут при низких концентрациях кислорода (от анаэробных до аэротолерантных) [13], и их рост ингибируется высокими уровнями соли во влаге (S/М), в значительной степени завися от типа штамма [14, 15, 16]. ПКБ оптимально растет между рН 6 и 7 с максимумом рН для роста на уровне 8,5 и минимумом на уровне 4,6 [15, 17]. pH сыра контролирует скорость роста и метаболизма ПКБ [18], а более высокая инокуляция необходима для сыров с более низким pH сыра [13]. Оптимальная температура роста для ПКБ составляет 30°C, но рост также происходит между 7 и 45°C, как было рассмотрено Langsrud et al. [15]. Park et al. [7] сообщили, что 16 из 33 испытанных штаммов ПКБ росли при температуре 7,2°C, а 31 из 33 — при температуре 12,8 °C. Никакого роста P. freudenreichii не было зарегистрировано при температуре 2,8°C.

Кроме того, молочные ПКБ имеют лишь несколько требований к питанию. Многие штаммы ПКБ растут в отсутствие источников органического азота, в базальной среде, содержащей углерод и источник энергии, аммоний, минералы и 2-4 витамина (требуются как минимум пантотенат и биотин) [11, 19, 20].

Одним из важных свойств ПКБ для использования в мясной промышленности является их протеолитическая активность. Протеолитическая система была обнаружена у всех видов молочной пропионибактерии [21]. Searles et al. [22] сообщили, что пропионовокислые бактерии в среде с кислотным казеином способны увеличивать количество растворимого в трихлоруксусной кислоте азота. Позднее El Soda et al. [23] обнаружили «общую казеинолитическую активность» у трех штаммов Propionibacterium freudenreichii и у одного штамма P. acidipropionici. Внутриклеточные пептидазы были изучены более детально [15, 24, 25] и обнаружены пептидазы, способные высвобождать в среду пролин. Perez Chaia et al. [26] показали, что лейцин-аминопептидаза и пролин-иминопептидаза обладают хорошей активностью в отношении P. freudenreichii. Эта пролин-иминопептидаза была очищена и охарактеризована [27]. El Soda et al. [23] также обнаружили пролил-дипептидил-аминопептидазную активность [21].

Пропионовокислые бактерии производят некоторые летучие соединения, которые важны для вкуса сыра. Thierry et al. [19, 20, 28, 29] изучали образование этих соединений с помощью ПКБ в сыре. Соединения, производимые ПКБ, которые отвечают за вкус сыра, представляют собой уксусную, пропионовую и бутановую кислоты, а также 2-метил и 3-метилбутанал. P. freudenreichii, например, производит ароматические соединения различного происхождения (ферментация, липолиз, аминокислотный катаболизм). Работа Thierry et al. [28] показали, что в сырах Raclette (раклет) с добавлением Propionibacterium freudenreichii наблюдались различные биохимические изменения по сравнению с контрольным сыром: ферментация лактата до пропионата и ацетата, выраженное усиление липолиза, некоторые модификации аминокислотного профиля, превращение аминокислот с разветвленной цепью в различные ароматические соединения и увеличение других летучих соединений, таких как сложные эфиры и кетоны.

Бифидобактерии в основном добавляются в пищевые продукты из-за их пробиотических свойств [30, 31, 32, 33]. Бифидобактерии, естественно присутствующие в доминирующей микробиоте толстой кишки, составляют до 25% культивируемых фекальных бактерий у взрослых и 80% у младенцев. В качестве пробиотических агентов бифидобактерии были изучены на предмет их эффективности в профилактике и лечении широкого спектра желудочно-кишечных расстройств животных и/или человека, таких как нарушения кишечного транзита, кишечные инфекции, аденомы и рак толстой кишки [32]. В основном бифидобактерии используются в молочной промышленности в качестве компонента ферментированных напитков, но также они используются в качестве закваски (в сочетании с другими бактериями) при производстве ферментированных колбас [31].

Учитывая вышеизложенное, интересным вопросом для изучения является влияние пропионовокислых бактерий на развитие вкуса ферментированных колбас. Таким образом, данная работа была проведена с целью изучения потенциальной пользы от использования пропионибактерий и бифидобактерий в качестве заквасок при производстве сырокопченых колбас и их влияния на качественные характеристики и химический состав колбасных изделий. Исследование влияния добавок закваски и вкусовых соединений, а также сенсорная оценка являются очень интересными объектами для изучения. Для определения этого эффекта колбасы с закваской пропионовокислых и бифидобактерий сравнивали с колбасами с коммерческой заквасочной культурой.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Изготовление и отбор проб. Колбасы, использованные в данном исследовании, были произведены на местном заводе (Республика Бурятия, Россия). Ингредиенты колбасных изделий приведены в Таблице 1. Были взяты средние значения результатов трех экспериментов.

Сырокопченые колбасы производились с использованием говядины, постной свинины, свиного жира, NaCl, NaNO2, сахара, коньяка и специй. На первом этапе мясо измельчали, смешивали с солью, специями и коньяком. На втором этапе добавляли 5 %-ный раствор нитрита натрия, коньяк, постную свинину, свиное сало и специи. После измельчения мяса и перемешивания смесь разделяли на две партии: партию А инокулировали 1 см 3 закваски, содержащей пропионовокислые бактерии и бифидобактерии (МИП “Бифивит”, Улан — Удэ, Россия) на 100 кг сырого мяса, а в партию В добавляли коммерческую закваску Bitec LS-25 (Frutarom, Германия) с концентрацией 0,025%.

Таблица 1. Композиция сырокопченых колбас со стартовой культурой

Экспериментальная закваска содержала штаммы Propionibacterium shermanii KM-186 и Bifidobacterium longum B379M. Количество клеток каждого штамма составляло 10 log кое/см 3 . Закваска была в жидком виде.

Коммерческая закваска Bitec LS-25 содержит штаммы Staphylococcus carnosus и Lactobacillus sakei. Общее количество клеток составляет 1,5*10 log КОЕ/г. Консистенция закваски представляла собой мелкозернистый, сублимированный порошок. Производитель утверждает, что закваска создает быстрый процесс подкисления и характерный для брожения аромат, ускоряет цветообразование, улучшает цветостойкость, жиростойкость и консистенцию. Содержащийся в нем штамм лактобацилл отлично подходит для конкуренции со спонтанной флорой.

Мясную смесь сразу же набивали в натуральные оболочки для получения колбас с начальным весом прибл. 1400-1500 г, длиной прибл. 60 см

Процесс термообработки проводился в термоагрегате с автоматическим контролем в течение (3–4) дней. В первый день колбасы выдерживали при температуре 24 °С, относительной влажности 92,3% и скорости воздуха (0,2–0,5) м/с. Затем температуру понижали до (22–20) °С и выдерживали в течение одного дня. На третий день колбасы курили в течение 4-6 часов, относительная влажность снижалась до 88,3%. Затем на четвертый день интенсивность дыма увеличивалась, и процесс проводился при (20 ± 2) °С, относительной влажности (83,3%) и скорости воздуха (0,05–0,1) м/с. Общая продолжительность обработки дымом составляла (8-12) часов.

Процесс сушки проводили в том же термоагрегате при температуре (18 ± 2)°С и относительной влажности воздуха 82,3% в течение 1 суток. Дальнейшую сушку проводили при температуре (13 ± 1)°С, относительной влажности воздуха (77,3%) и скорости воздуха (0,05–0,10) м/с в течение (17-20) суток.

Микробиологический анализ. Образцы колбасы (10 г) гомогенизировали с 90 мл дистиллированной воды. Были приготовлены десятичные разведения. Микробиологические анализы проводили ежедневно в течение 10 дней созревания.

Численность пропионовокислых бактерий определяли на среде ГМК-1 («Биокомпас-С», Россия), состоящей из кукурузно-молочной смеси (30 г), пептона (30 г), лактозы (18 г), аскорбиновой кислоты (1 г), цитрата натрия (12 г), сульфата магния (0,24 г), фосфата калия (одноосновного) (4 г), фосфата натрия (двухосновного) (2 г), агара (6 г), дистиллированной воды (2000 мл). Инкубацию проводили при температуре 30°С в течение 5 дней.

Количество бифидобактерий определяли с помощью среды Блаурока (Blaurock, 1937) с неомицином (к 20 мл среды добавляли 0,2 мл раствора неомицина). Для получения раствора неомицина один флакон неомицина (500000 ME) растворяли в 50 мл дистиллированной воды. Колонии подсчитывали после инкубации при 37°С через 3 дня.

Химический анализ. Анализы содержания влаги, рН и NaNO2 проводились в трех экземплярах. Влажность сухих ферментированных колбас определяли путем дегидратации при 103°С до постоянной массы по рекомендованным ISO методам (ISO, 1997). рН измеряли с помощью рН-метра рН-150М (Гомельский завод измерительных приборов, Беларусь).

Количество нитритов анализировали спектрофотометрическим методом на фотоэлектрическом фотометре КФК-3 (Загорский оптико-механический завод, Россия).

Сенсорная оценка. Сенсорная оценка проводилась девятью подготовленными экспертами. Экспертам было предложено оценить сенсорные характеристики сосисок. Образцы колбасы были нарезаны ломтиками (толщина составляла примерно 2 мм). Контрольная и опытная партии были пронумерованы и предоставлены каждому эксперту с дегустационной картой. Сенсорная оценка проводилась в отдельных помещениях. Судьи оценивали шесть сенсорных характеристик. Общий внешний вид, цвет, аромат, текстура, вкус и сочность были атрибутами, оцениваемыми в ходе сенсорного анализа. В исследовании использовалась гедоническая шкала от 1 (крайне плохо/ неприемлемо) до 9 (крайне приемлемо). Были рассчитаны средние значения оценок всех экспертов по каждой характеристике.

Статистический анализ. Полученные данные по рН, влагосодержанию, количеству нитритов, летучим соединениям, сенсорным характеристикам оценивали статистически для определения достоверных различий между продуктами по этим параметрам. Анализ каждого параметра проводился в трех экземплярах в разное время выборки. Среднее значение, стандартное отклонение и стандартная ошибка были рассчитаны для всех количественных переменных. Был проведен дисперсионный анализ (ANOVA). Для всех данных использовался уровень значимости Р

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Микробиологический анализ

Результаты анализа количества пропионовокислых бактерий и бифидобактерий показаны на рис. 1. В обоих образцах мы видим увеличение количества бактерий в процессе производства.

Рис. 1. Изменения в росте пропионибактерий и бифидобактерий в сырокопченых колбасах.

Начальное количество пробиотических микроорганизмов составляло примерно 5 log КОЕ / г. Количество жизнеспособных клеток бифидобактерий и пропионовокислых бактерий постепенно увеличивается, начиная со второго дня изготовления. Через 3 и 4 дня количество бифидобактерий составляло 9 log КОЕ / г и 10 log КОЕ / г, количество пропионовокислых бактерий составляло 10–11 log КОЕ / г. Колбасы содержали приблизительно 11–12 log КОЕ / г бифидобактерий и такое же количество пропионовокислых бактерий после 5 дней производства. Это количество бактерий было стабильным во время копчения и сушки.

Результаты исследований показали, что ПКБ устойчивы к высоким концентрациям NaCl и низким температурам во время посола. Результаты исследования показали, что пропионовокислые бактерии и бифидобактерии могут выживать и расти в мясе из-за низких потребностей в питании и их способности выживать при низких положительных температурах. Этот факт позволяет использовать эти бактерии для производства ферментированных колбас.

Интересное:  Какая Хлебница Лучше Для Хранения Хлеба

Результаты химического анализа

Результаты анализа рН приведены на рис. 2. Начальный рН контрольного образца составлял 6, рН образца со стартовой культурой — 5,95, значения рН обоих образцов резко снижались после 5 дней ферментации. Снижение в образце с экспериментальной закваской было больше, чем в контрольном образце. Значения рН в обоих образцах медленно увеличивались после 10-дневной ферментации за счет протеолиза белков и образования продуктов их разложения. Значение рН близко к изоэлектрической точке после 20 дней ферментации.

Рис. 2. Изменение рН сырокопченых колбас с добавлением пропионовокислых бактерий и бифидобактерий.

Рис. 3. Влияние добавления заквасочных культур пропионовокислых бактерий и бифидобактерий на изменение содержания влаги.

Одним из основных факторов, формирующих качество сырокопченых колбас, является рН. При значениях рН, близких к 5,2–5,3, происходит набухание гидролизата коллагена и активация клеточных ферментов, особенно катепсинов. При этом подавляется развитие патогенных и токсикогенных бактерий. В связи с этим значение рН было основным критерием установления дозы вносимых бактериальных концентратов в колбасные изделия. Поэтому в модельные образцы фарша сырых колбас инокулировали различные количества бактериального концентрата.

Таблица 2. Характеристика сырокопченых колбас

Хорошо известно, что мясо со значением рН, близким к изоэлектрической точке, обладает самой низкой водоудерживающей способностью. Более низкая водоудерживающая способность может ускорить процесс сушки. В опытном образце значения рН были ближе к изоэлектрической точке, чем в контрольном образце, вероятно, это является причиной более низкого содержания влаги в этой колбасе. значения рН, близкие к изоэлектрической точке, могут быть причиной лучшей консистенции продукта. Результаты исследования показали, что бактериальный концентрат пропионовокислых бактерий и бифидобактерий позволяет сократить время производственного процесса, что может иметь хорошее практическое применение.

Бифидобактерии также могут элиминировать нитрит по неферментативному механизму с образованием оксида азота [37, 38].

Сенсорная оценка

Сенсорный анализ является одним из наиболее ценных факторов в оценке качества. Это особенно важно для оценки новых продуктов. Сенсорные профили сырокопченых колбас показаны на рис. 4.

Рис. 4. Сенсорный профиль сырокопченых колбас.

В экспериментальной выборке результаты были лучше, чем в контрольной. Опытные образцы имели более интенсивный и приятный аромат, а также мягкий вкус с кисломолочным оттенком. Консистенция опытных образцов была более однородной по сравнению с контролем. Цветовые характеристики также отличались. Образец с пропионовокислыми и бифидобактериями был темно-красным, и он имел более однородный цвет.

Результаты сенсорного анализа показали, что проба с пропионовокислыми бактериями и бифидобактериями получила более высокие баллы по всем сенсорным характеристикам. Это может быть результатом действия закваски на текстуру и вкус продуктов. Таким образом, полученные результаты свидетельствуют о положительном влиянии комбинированных концентратов на органолептические свойства сырокопченых колбас.

Идентификация летучих соединений

В ходе исследования с помощью газовой хроматографии (ГХ) было обнаружено около 140 веществ, из которых 85 были идентифицированы. Результаты анализа ГХ приведены в таблице 3. Установлено, что основными летучими соединениями колбасных изделий являются насыщенные и ненасыщенные алифатические альдегиды, спирты, кетоны, лактоны и жирные кислоты.

Таблица 3. Летучие соединения в ферментированных колбасах

Таблица 4. Процент летучих соединений в сырокопченых колбасах

Летучие соединения могут быть разделены в зависимости от их возможного происхождения. Специи могут быть ответственны за образование терпенов и углеводородов. Фенолы могут быть компонентами дымовых газов.

Проведенное исследование показало, что между образцами колбасных изделий существует значительная разница в содержании летучих соединений. Их качественные составы различны. Некоторые соединения были обнаружены только в экспериментальных образцах. Например, α-Туйен, п-Цимен, γ-Терпинен, фенилэтиловый спирт, γ-Декалактон, Тетрадеканал, β-Селинен. Эти результаты могут быть связаны с различной активностью заквасочных культур, использованных в исследовании.

Общеизвестно, что лактоны относятся к уроновым кислотам. Например, при ферментации бифидобактерий D-глюкоза окисляется с образованием D-глюкуроновой кислоты. Присутствие лактонов в экспериментальном образце стало причиной мягкого сливочного тона колбасы.

ВЫВОДЫ

Таким образом, проведенное исследование показало, что использование Propionibacterium shermanii KM-186 и Bifidobacterium longum B379M в качестве заквасок положительно влияет на сенсорные характеристики сырокопченых колбас.

В экспериментальной выборке результаты были лучше, чем в контрольной. Опытные образцы имели более интенсивный и приятный аромат, а также мягкий вкус с кисломолочным оттенком. Консистенция опытных образцов была более однородной по сравнению с контролем. Цветовые характеристики также отличались. Образец с пропионовокислыми и бифидобактериями был темно-красным, и он имел более однородный цвет.

Высушивание губительно действует на микробы, однако разные виды обладают различной чувствительностью. Холерный вибрион гибнет через 48 часов. Возбудитель туберкулёза — через 70 дней. Длительно сохраняются микробы в высохших плёнках из гноя, крови или мокроты (месяцы). Высушивание практически не действует на споры. В процессе высушивания клетка лишается во­ды, происходит инактивация ферментных систем, наступает гибель микроба. Высушивание при­меняют в медицине: в сухом виде хранят лекарственное сырьё, многие лекарства. Широко приме­няется лиофильная сушка — высушивание из замороженного состояния в вакууме. В этом случае вода переходит из кристаллического состояния в парообразное, минуя жидкую фазу, жизнеспособ­ность микробов сохраняется; срок годности живых вакцин и других иммунобиологических пре­паратов увеличивается до 1 года и более.

Лучистая энергия (ультрафиолет и ионизирующее излучение) непосредственно действует за нуклеиновые кислоты в клетке, вызывая смертельные мутации, или приводит к образованию сво­бодах радикалов, вызывающих инактивацию ферментных систем. Солнечный свет, особенно его коротковолновая часть спектра, оказывает выраженный бактерицидный эффект. УФЛ используют в медицине для обработки операционных, родильных домов и отделений, асептических помеще­ний аптек, в бактериологических лабораториях. Для этих целей устанавливают бактерицидные об­лучатели с длиной волны 260-300 ям. Ионизирующее излучение используют для стерилизации.

Ультразвук вызывает гибель микроорганизмов: в клетке образуются кавитационные полости с резкими перепадами разреженного и избыточного давления, что приводит к разрушению клетки. Этот метод используют для получения компонентов микробной клетки, обеззараживания некоторых жидких препаратов, питьевой воды, молока, соков.

Температура ниже 0°С не оказывает губительного действия, однако микробы прекращают рост и размножение. Некоторые вирусы сохраняются при — 27С°С. В медицине лекарственное сы­рье, многие лекарственные и биологические препараты хранят при температуре от 0°С до + 10°С (температура бытового холодильника) Высокие температуры более губительны для микробов, однако разные виды могут обладать неодинаковой чувствительностью. Так, менингококки гибнут уже при комнатной температуре, возбудитель сифилиса — при +40°С, возбудитель дизентерии — при +60°С, бруцеллы — при 100°С. Споры бактерий погибают лишь через 2-5 часов кипячения.

Лиофильное высушивание предусматривает переход вещества из замороженного состояния в сухое, минуя жидкую фазу. Это достигается при нагревании замороженных культур бактерий в условиях вакуума и используется при приготовлении иммунобиологических препаратов.

12. Дыхание бактерий. Методы культивирования анаэробны микроорганизмов.

Дыхание (биологическое окисление) у бактерий тесно связано с питанием и дает энергию для осуществления функций клетки. При этом в ходе биохимических реакций образуется АТФ — универсальный аккумулятор и переносчик химической энергии у живых существ. Различают аэробный и анаэробный типы дыхания. Микробы, окисляющие органические соединения с использованием кислорода воздуха (в качестве акцептора ионов Н+), называют аэробами. В отличие от них, анаэробы получают энергию в ходе окислительно-восстановительных реакций, при которых акцептором Н+ является не кислород, а нитрат или сульфат (в бескислородных условиях). Многие микробы, имея полный набор дыхательных ферментов, могут существовать как в кислородной, так и бескислородной среде — это факультативные (необязательные) анаэробы с нитратным типом ды­хания. Облигагные (обязательные) анаэробы существуют лишь в строго анаэробных условиях, т.к. в аэробных условиях образуются токсичные перекиси (Н2О2 и др.), которые не разрушаются из-за отсутствия у облигатных анаэробов фермента каталазы, для них характерен сульфатный тип дыха­ния. Необходимыми условиями для культивирования микробов являются:

наличие подходящей по составу питательной среды;

оптимальной (по содержанию О2 и др.) атмосферы над питательной средой;

Микробы, относимые к облигатным паразитам, наиболее требовательны к условиям выращи­вания. Многие из них (из-за отсутствия или дефекта собственных метаболических систем) могут размножаться только в живых клетках (вирусы, риккетсии, хламидии). Для их культивирования заражают животных, куриные эмбрионы или растущие в искусственной среде клетки эукариотов (культуры ткани). Многие микробы растут на естественных (молоко, картофель и т.д.) или искус­ственных питательных средах.

Для культивирования анаэробов необходимо понизить окислительно-восстановительный потенциал среды, создать условия анаэробиоза, т. е. пониженного содержания кислорода в среде и окружающем ее пространстве. Это достигается применением физических, химических и биологических методов.

Физические методы. Основаны на выращивании микроорганизмов в безвоздушной среде, что достигается:

1) посевом в среды, содержащие редуцирующие и легко окисляемые вещества;

2) посевом микроорганизмов в глубину плотных питательных сред;

3) механическим удалением воздуха из сосудов, в которых выращиваются анаэробные микроорганизмы;

4) заменой воздуха в сосудах каким-либо индифферентным газом.

Химические методы. Основаны на поглощении кислорода воздуха в герметически закрытом сосуде (анаэро-стате, эксикаторе) такими веществами, как пирогаллол или гидросульфит натрия Na2S204.

Биологические методы. Основаны на совместном выращивании анаэробов со строгими аэробами. Для этого из застывшей агаровой пластинки по диаметру чашки вырезают стерильным скальпелем полоску агара шириной около 1 см. Получается два агаровых полудиска в одной чашке. На одну сторону агаровой пластинки засевают аэроб, например, часто используют S. aureus или Serratia marcescens. На другую сторону засевают анаэроб. Края чашки заклеивают пластилином или заливают расплавленным парафином и помещают в термостат. При наличии подходящих условий в чашке начнут размножаться аэробы. После того, как весь кислород в пространстве чашки будет ими использован, начнется рост анаэробов (через 3-4 сут). В целях сокращения воздушного пространства в чашке питательную среду наливают возможно более толстым слоем.

Комбинированные методы. Основаны на сочетании физических, химических и биологических методов создания анаэробиоза.

Типы и механизмы питания бактерий.

Типы питания. Микроорганизмы нуждаются в углеводе, азоте, сере, фосфоре, калии и других элементах. В зависимости от источников углерода для питания бактерии делятся на аутотрофы, использующие для построения своих клеток диоксид углерода С02и другие неорганические соединения, и гетеротрофы, питающиеся за счет готовых органических соединений. Аутотрофными бактериями являются нитрифицирующие бактерии, находящиеся в почве; серобактерии, обитающие в воде с сероводородом; железобактерии, живущие в воде с закисным железом, и др.

Типы и механизмы питания бактерий.

Давайте будем совместно делать уникальный материал еще лучше, и после его прочтения, просим Вас сделать репост в удобную для Вас соц. сеть.